Organosubstituierte 1,1'-Spirobisilole und 1,1'-Spirobigermole durch vierfache Organoborierung von Tetra-1-alkinylsilanen und -germanen^[1]

Roland Köster**, Günter Seidel*, Ingo Klopp*, Carl Krüger**, Gerald Kehr^b, Jürgen Süß^b und Bernd Wrackmeyer*^b

Max-Planck-Institut für Kohlenforschung^a, Kaiser-Wilhelm-Platz 1, W-4330 Mülheim an der Ruhr

Laboratorium für Anorganische Chemie der Universität Bayreuth^b, Postfach 101251, W-8580 Bayreuth

Eingegangen am 28. Januar 1993

Key Words: Silanes, tetra-1-alkynyl- / Germanes, tetra-1-alkynyl- / 1,1-Ethyloboration, intermolecular / 1,1-Vinyloboration, intramolecular / Spirosilanes / Spirogermanes / Protodeborylation / Transition metals, η⁴-complexes of

Organosubstituted 1,1'-Spirobisiloles and 1,1'-Spirobigermoles by Fourfold Organoboration of Tetra-1-alkynylsilanes and -germanes^[1]

Si(C=CR)₄ [R = Me (A), R = Ph (B), R = SiMe₃ (C)] and Ge(C=CR)₄ [R = Me (D), R = Ph (E)] react with Et₃B by twofold intermolecular ethyloboration and twofold intramolecular vinyloboration to form the organo-substituted 5-sila(germa)spiro[4.4]nonatetraenes $C(R)=CEtC(BEt_2)=C(R)MC(R)=C(BEt_2)-$ C(Et)=CR [M = Si, R = Me: 1a, R = Ph: 1b; M = Ge, R = Me: 2d, R = Ph: 2e] via the mono- and bisethyloboration compounds 3 or 4 (e.g. 3b, 4c) with different rates: Ge \gg Si; Me > Ph. For comparison, compounds $Sn(C=CR)_4$ [R = Me (F), R = Ph (G)] react with Et₃B in the absence of a solvent to mixtures of various spirotin compounds (5f, 5g, 6f, 8f, 9g, 10g, 11g) of which only 9g (R = Ph) corresponds to the spirosilanes and -germanes. This is the result of effective competition be-

Neben der lange bekannten Addition/Umlagerung von 1-Alkinylboraten mit Elektrophilen^[2] hat sich vor allem die Organoborierung von 1-Alkinylmetall-Verbindungen als nützliche Methode zur Synthese organometallisch substituierter Alkene und verschiedener, anderweitig schwer zugänglicher Heterocyclen erwiesen^[3]. Kürzlich haben wir gezeigt, daß die 1,1-Ethyloborierung von Di-1-alkinylsilanen einen einfachen Zugang zu organosubstituierten Silolen eröffnet^[4]. Nachdem aus verschiedenen Tetra-1-alkinylstannanen mit Trialkylboranen bereits Spirostannane erhalten wurden^[5,6], konnten wir jetzt auch einen entsprechenden Syntheseweg für Spiro-Silane (1,1'-Spirobisilole) und Spiro-Germane (1,1'-Spirobigermole) erschließen. Während 1,1'-Spirobistannole bis in die jüngste Zeit eingehend untersucht wurden^[6,7], waren entsprechende Spiro-Verbindungen des Germaniums^[7c,8] relativ wenig beschrieben und die des Siliciums^[7c] so gut wie unbekannt. Als Ausgangsverbindungen dienten uns die Tetra-1-alkinylsilane A-C, die Tetra-1alkinylgermane D und E sowie zum Vergleich die Tetra-1alkinylstannane F und G, die alle aus dem Element-tetrachlorid mit dem Alkalimetall-1-alkin M-C=CR (M = Li, Na, K; R = Me, Ph, SiMe₃) nach den Gl. (a₁) bis (a₇) hergestellt wurden.

Die 1-Alkinylsilane A–C reagieren langsam entsprechend Gl. (b_1) mit der doppelten Menge Triethylboran (Et₃B) und tween intramolecular and intermolecular organoboration in the case of the tetra-1-alkynyltin compounds. The protodeborylation of 1a, b and 2d, e with MeCO₂H leads to 12a, b and 13d, e, respectively. 12a isomerises by UV irradiation to allyl isomers 12a'. From 12a with 2 equiv. of maleic anhydride the 1:2 addition compound 14a is obtained, the autaddition of 12a, d leads to 15a, d. Spiro compound 12a reacts with (OC)₃Fe or CpCo(C₂H₄)₂ to give the cyclodiastereomeric η^4 -complexes [(OC)₃Fe]₂-12a (16a₁-a₄; X-ray structure analysis of meso-16a₁), (OC)₃Fe-12a (17a) and (CpCo)₂-12a (18a₁-a₄). – All products were characterized by multinuclear NMR, including measurements of the coupling constants ¹J(¹³C¹³C), ²J(²⁹Si²⁹Si), ⁿJ(²⁹Si¹³C) and ⁿJ(¹¹⁹Sn¹³C).

	Si(C≡CR) ₄			C≡CR) ₄	Ge(C≡CR) ₄	Sn(C≡CR) ₄	
	R R R	= M = Pł = Si	le: 1: Me	A B a: C	D E	F G	
				<u>.</u>			
SiCl	4	+	4	NaC≡CMe	$\frac{\text{Et}_2\text{O/DME}}{-4 \text{ NaCl}}$	Si(C≡CMe) ₄ A	(a ₁)
SiC	l ₄	+	4	KC≡CPh	$\xrightarrow{\text{Et}_2\text{O}}$	Si(C≡CPh) ₄ B	(a ₂)
SiC	1 ₄ -	+ 4	4 L	.iC≡CSiMe ₃	-4 LiCl '	Si(C≡CSiMe ₃) ₄ C	(a ₃)
GeC	214	+	4	NaC≡CMe	Toluol -4 NaCl	Ge(C≡CMe) ₄	(a ₄)
GeC	214	+	4	KC≡CPh	$\frac{\text{Et}_2\text{O}}{-4 \text{ KCl}}$	D Ge(C≡CPh) ₄ E	(a ₅)
SnC	l ₄	+	4	LiC≡CMe	-4 LiCl	Sn(C≡CMe) ₄ F	(a ₆)
SnC	21 ₄	+	4	LiC≡CPh	-4 LiCl	Sn(C≡CPh) ₄	(a ₇)

bilden nach vierfacher Organoborierung unmittelbar die substituierten 1,1'-Spirobisilole **1a-c**, die systematisch als 5-Silaspiro[4.4]nona-1,3,6,8-tetraene (s. exp. Teil) bezeichnet werden.

A wurde zunächst in siedendem Toluol mit der 5.4fachen Menge Et₃B erhitzt. Nach vollständigem Verbrauch von A ließ sich das 1,1'-Spirobisilol 1 a allerdings nur mit ca. 45% Ausbeute isolieren. Die restlichen Anteile sind nach Abdestillieren von 1 a hochzähe Borane, die offensichtlich infolge *B*-Substituentenaustauschs nach Gl. (c) gebildet wurden.

Läßt man A aber allein in siedendem, überschüssigem Et_3B reagieren, so kann nach 4tägigem Erhitzen unter Rückfluß bei ca. 42proz. Umsatz von A eine Ausbeute an 1a von 85% erzielt werden. Unverbrauchtes A wird analysenrein zurückerhalten. Viskose Borane bilden sich nicht, da die Boran-Dismutation nach Gl. (c) unter diesen Bedingungen offensichtlich keine Rolle spielt. Auch alle anderen 1-Alkinyl-Verbindungen haben wir daher ohne Verdünnungsmittel in reinem, siedendem Et_3B umgesetzt.

Entsprechend Gl. (b₂) sind die substituierten 1,1'-Spirobigermole 2d und e gewonnen worden. Die analysenreine, bei Raumtemperatur flüssige Germanium-Verbindung 2d (5-Germaspiro [4.4] nona-1,3,6,8-tetraen) läßt sich aus D mit Et₃B bereits nach maximal 2stündigem Erhitzen mit einer Ausbeute von 84.5% isolieren. Das German E setzt sich demgegenüber deutlich langsamer um. Erst nach 8stündigem Erhitzen unter Et₃B-Rückfluß sind die ¹³C-NMR-Signale von E verschwunden. Mit ca. 90% Ausbeute isoliert man festes, reines 2e. Weitaus am trägsten reagiert Tetrakis(phenylethinyl)silan (B) mit Et₃B. Zwar konnte das 1,1'-Spirobisilol 1b in siedendem Et₃B nach 17tägigem Erhitzen einwandfei (MS) nachgewiesen, jedoch von B und dem Produkt der zweifachen Organoborierung 3b nicht abgetrennt werden. Ein zusätzlicher Nachweis für die vierfache Organoborierung von Bergab sich durch Identifizierung des borfreien 1,1'-Spirobisilols 12b (s.u.).

Die Verbindung C konnte mit Et₃B in Toluol nach Gl. (b_1) zum Spirosilan 1c umgesetzt werden, das nach 72stündigem Erhitzen unter Rückfluß mit 86% Ausbeute gewonnen wurde. Die Reaktionen zu den 1,1'-Spirobisilolen bzw. -bigermolen verlaufen über zahlreiche Zwischenstufen. Wie für das Silol 3b läßt sich auch für 3c ein vollständiger Satz von ¹³C- und ²⁹Si-NMR-Daten ermitteln. Zusätzlich lassen sich NMR-spektroskopisch geringe Mengen offenkettiger Verbindungen vom Typ 4c, der Stufe nach der ersten Ethyloborierung nachweisen.

Das Verhalten der Zinnverbindung F gegenüber Et₃B ähnelt dem der Siliciumverbindung A. Im Lösungsmittel wie in siedendem Toluol fällt die Ausbeute an **1a** zugunsten brauner, zäher Borane. In reinem Et₃B liefert F nach Gl. (d) aber ein ca. (3: 1)-Gemisch von **5f** und **6f**. Außerdem ist das Intermediat **7f** nachzuweisen und kann bei -20 °C aus Lösungen (Hexan, Toluol, CH₂Cl₂) isoliert werden^[6e]. Während sich verdünntes **7f** beim Erwärmen auch in Gegenwart von Et₃B unkontrolliert zersetzt, bildet **7f** in reinem Et₃B nach Gl. (d) über die leicht detektierbare, zwitterionische Verbindung **8f** das **5f/6f**-Gemisch. Beim Isomerenpaar **8f/8f'** und bei **5f** entsteht eines der beiden möglichen Diastereomeren (bei vorgegebener Stereochemie des Stannolenrings) jeweils bevorzugt.

Aufgrund der geringen Löslichkeit reagiert die Zinnverbindung G in Et_3B bei ca. 0°C auch nach Tagen nicht nachweisbar. Bei Raumtemperatur entsteht nach 5 Tagen eine homogene gelbe Lösung mit einem Gemisch aus 5g, 5g', dem 1,1'-Spirobistannol 9g sowie den beiden Spirostanna-

nen 10g und 11g im (14.4:10.5:28:44:3)-Verhältnis (Abb. 1). In Lösungsmitteln $(CH_2Cl_2, CHCl_3)$ erfolgt bei G wie bei F mit Et₃B unkontrollierte Zersetzung.

Aus den Spirosilanen 1 und -germanen 2 lassen sich durch Protodeborylierung^[9] mit Essigsäure nach den Gl. (e) leicht die borfreien 1,1'-Spirobisilole 12a, b bzw. das 1,1'-Spirobigermol 13d gewinnen. 12a reagiert mit Maleinsäureanhydrid (MSA) in Heptan zu unreinem 14a (85%).

Im UV-Licht wird das in Pentan gelöste 1a bei Raumtemperatur langsam in Isomere (1a') umgewandelt (¹H-NMR). Aus der Lösung erhält man nach Protodeborylierung mit Eisessig in siedendem THF ein Gemisch, das sich nach GC/MS-Analyse aus vier vermutlich Allylisomeren 12a' (neue ¹H-NMR-Signale) mit Molmasse 244 zusammensetzt.

Die Verbindungen 12a und 13d bilden bei Raumtemperatur und darunter in reinem Zustand und in Lösung allmählich Oligomere und Polymere. ¹H- und ¹³C-NMR-spektroskopisch läßt sich nachweisen, daß zunächst eine [2 + 4]-Cycloaddition zu verschiedenen Dimeren des Typs 15 (15a, 15d) führt, wobei in Lösung die Dimerisierung von 13d geringfügig schneller verläuft.

1387

Abb. 1. ¹¹⁹Sn-NMR-Spektrum des (5g, 5g', 9g, 10g, 11g)-Gemischs aus G und Et₃B (bei Raumtemp. nach 5 Tagen); Zuordnung aufgrund entsprechender ¹³C-NMR-Signale, vgl. Tab. 1 und experimentellen Teil

Das borfreie cyclodiastereomere Spirosilan 12a reagiert mit (OC)₅Fe im UV-Licht bei Raumtemperatur unter CO-Abspaltung zum Bis(tricarbonyleisen)- π -Komplex 16a, der NMR-spektroskopisch vier Isomere 16a₁-a₄ anzeigt, in Übereinstimmung mit den zu erwartenden racemoiden und mesoiden Racematen der beiden Cyclodiastereomerenpaare mit (SR/RS)- bzw. (SS/RR)-Konfiguration. Kristallines 16a₁

wurde analysenrein abgetrennt und mit Hilfe einer Kristallstrukturanalyse^[10] als eines der beiden *meso*-Isomere identifiziert (Abb. 2). Der Mono(tricarbonyleisen)- η^4 -Komplex **17a** liegt im Gemisch nur in geringer Konzentration vor, konnte aber massenspektrometrisch sicher nachgewiesen werden. Somit reagiert **17a** im UV-Licht mit (OC)₅Fe rascher als **12a**.

Mit CpCo(C₂H₄)₂ bei Raumtemperatur wird aus **12a** unter Freisetzen von Ethen der Bis[(cyclopentadienyl)cobalt]- π -Komplex **18a** gebildet. Auch hier liegen aufgrund der ¹³C-

NMR-Daten vier Isomere ($18a_1-a_4$) vor. Ein Mono-CpCo- η^4 -Komplex 19a konnte bisher nicht nachgewiesen werden.

Zum Verlauf der 1,1-Organoborierungen von $E(C \equiv C - R)_4$ (E = Si, Ge, Sn, Pb)

Der Verlauf der 1,1-Ethyloborierung über zwitterionische Zwischenstufen ist für Tetra-1-alkinylstannane gesichert^[5,6] und kann hier nochmals mit dem erstmaligen Nachweis von 8f bestätigt werden. 2,5-Diborylierte 3-Stannolen-Einheiten wie in 5f, 6f und 8f sind bei der Organoborierung von Di-1-alkinylstannanen auch gefunden worden^[11]. Die Verbindungen entstehen nach einer komplexen Umlagerung, wenn am Zinnatom zwei Alkenyl-Reste mit Dialkylboryl-Gruppen (Alkyl = Me, Et, Pr, Bu) in cis-Stellung zum Zinnatom gebunden sind. Bei der Organoborierung der Tetra-1-alkinylsilane und -germane mit Et₃B sind bisher keine zwitterionischen Intermediate vom Typ 7 oder 8 nachgewiesen worden, vermutlich wegen der notwendigen, relativ drastischen Reaktionsbedingungen. Auch 1,5-diborylierte Silolenoder Germolen-Ringe treten nicht auf, eine Folge der im Vergleich zur Sn-C = - festeren Si-C = - bzw. Ge-C = -Bindung. Die Bildung der Silole 3 und der Verbindung 4c auf dem Weg zu den 1,1'-Spirobisilolen 1 stützt aber die Annahme einer schrittweisen Reaktion. Verbindungen des Typs 4c mit der "falschen" Stereochemie für den Ringschluß [Et₂B- und (RC=C)₃Si-Gruppe in trans-Stellung] wurden auch bei der 1,1-Organoborierung von Sn(C=CSiMe₃)₄ mit R₃B beobachtet^[6a].

Somit findet man für Tetra-1-alkinylelement-Verbindungen $E(C \equiv CR)_4$, daß die Reaktivität gegenüber Et_3B in der Reihe $E = Si < Ge \ll Sn \ll Pb$ zunimmt. Im Fall von E = Pb erhält man für R = Me bereits bei -78 °C elementares Pb sowie Et₂BC=CMe und 2-Pentin (im Verhältnis 1:1). Die Bildung von Alkinylboran und Alkin läßt darauf schließen, daß ein Intermediat 7 f(Pb) entsteht, welches unter Bruch der Pb-C- und der Vinylbor-Bindungen glatt zerfällt. Am Auftreten der Zwischenstufen 7f und 8f sowie an der Vielfalt der Organoborierungsprodukte 5f, 5g, 5g', 6f, 9g, 10g und 11g wird deutlich, daß für E = Sn die intermolekulare mit der intramolekularen 1,1-Organoborierung erfolgreich konkurriert. Verwendet man Sn(C=CR)₄ mit R = Et, Pr, $Bu^{[6b]}$ anstelle von R = Me, tritt die Reaktion von 7 mit weiterem Et₃B in den Hintergrund. Damit läßt sich die Bildung von 8, und folglich auch von 5 und 6, vollständig unterdrücken. Im Gegensatz dazu muß für E = Si, Ge bei den Resten R = Me, Ph angenommen werden, daß nach der ersten intermolekularen 1,1-Ethyloborierung die intramolekulare 1,1-Vinyloborierung (z. B. zu 3b) bevorzugt und rasch abläuft, wenn die Stereochemie mit cis-Stellung von Silyl-, Germyl- und Boryl-Gruppe gegeben ist. Eine Stufe 7(Si) oder 7(Ge) wird vermutlich nicht durchlaufen. Erst wenn für eine weitere intramolekulare Reaktion keine Möglichkeit mehr besteht, erfolgt wieder die intermolekulare Reaktion mit Et₃B, was dann letztlich zu den Spirosilanen 1 bzw. den Spirogermanen 2 führt. Wie bei den Di-1alkinylsilanen^[4] ist die Reaktivität auch bei den Si(C≡CR)₄-Verbindungen gegenüber Et_3B für R = Me größer als für R = Ph. Aufgrund der sehr langsamen Reaktion für $R = SiMe_3$ [im Gegensatz zu $Me_2Si(C \equiv CSiMe_3)_2$]^[4] ist zu schließen, daß bei sterischer Hinderung (vgl. die Molekülstruktur eines entsprechenden Spirostannans^[6a]) die letzte intramolekulare 1,1-Vinyloborierung zum 1,1'-Spirobisilol 1c nur relativ schwer vollzogen wird.

NMR-Spektren

Die Strukturen der 1,1'-Spirobisilole, -bigermole und -bistannole sind mit konsistenten Daten aus ¹H-, ¹¹B-, ¹³C-, ²⁹Si- und ¹¹⁹Sn-NMR-Spektren belegt. In Tab. 1 finden sich die ¹³C-NMR-Daten für die Gerüst-Kohlenstoffatome, deren Änderung bei der Komplexierung ganz charakteristisch ist (vgl. den experimentellen Teil für die übrigen NMR-Daten). Mit Ausnahme von **7f**, das ein typisches ¹¹B-NMR-Signal^[5,6,12] für ein vierfach koordiniertes Boratom bei $\delta = -5.6$ hat, liegen die δ^{11} B-Werte im Bereich für dreifach koordinierte Boratome, und die Resonanz-Signale sind extrem breit ($h_{1/2} \ge 1000$ Hz). Aufgrund des **8f/8f'**-Gleichgewichts in Et₃B und der Dominanz von dessen ¹¹B-NMR-Signal kann für **8f** kein ¹¹B-Signal sicher zugeordnet werden.

Die Zuordnung der ¹³C-Resonanz-Signale beruht auf zweidimensionalen (2D) ¹³C/¹H-Verschiebungskorrelationen, ²⁹Si- oder ^{117/119}Sn-Satelliten entsprechend den Kopplungskonsanten $J(^{29}Si^{13}C)$ oder $J(^{117/119}Sn^{13}C)^{[3-6,11]}$, z.T. auch auf ¹ $J(^{13}C^{13}C)$ sowie auf der größeren Linienbreite der ¹³C-Resonanz-Signale für borgebundene ¹³C-Kerne^[12]. Kopplungskonstanten ¹ $J(^{13}C^{13}C)$ wurden entweder mittels der INADEQUATE-Pulssequenz^[13] oder direkt aus INEPT-Experimenten^[14] bestimmt. Die ¹ $J(^{13}C^{13}C)$ -Werte für **1a**, **2d**, **12a**, **16a**₁ (s. u.) belegen den Einfluß der Borylgruppe (vgl. **1a**, **12a**), des zentalen Elementes Si oder Ge (vgl. **1a**, **2d**) und der Metallkomplexierung (vgl. **16a**₁). Bemerkens-

Tab. 1	. ¹³ C-,	²⁹ Si-	und	¹¹⁹ Sn-NM	IR-Daten	für	die	$(C_4E)-G$	erüst-
Atome	der Sp	irosil	ane, •	-germane,	-stannane	und	der	η⁴-Kom	plexe
der Spirosilane									

Verbinduna		δ ²⁹ Si			
Nr.	C ¹	C4	C ²	C3	{ δ ¹¹⁹ Sn}
1a	128.4 [61.0]	123.9 [65.5]	170.4 [br]	158.8 [10.0]	+10.8
1c	141.6 [63.4] [40.2] ^[c]	133.1 [62.6] [46.6] ^[c]	188.9 [br]	174.7 [11.2] [7.2] ^[d]	+44.7 ^[b]
2d	130.4	127.6	165.0	154.1	-
5f	129.4 [377.0]	130.8 [388.4]	167.3 [br]	153.2 [114.9]	{+16.1}
9g	143.3 [390.5]	139.1 [436.6]	169.8 [br, 52.0]	157.1 [111.1]	{+6.5}
10 g	144.6 [405.2]	139.7 [458.6]	168.5 [br, 47.5]	156.4 [111.2]	{-139.5}
12a	133.5 [62.0]	122.6 [66.4]	156.3 [8.0]	147.1 [9.0]	+5.1
13 d	136.2	126.4	152.1	143.6	-
16a ₁	66.5 [53.1]	54.9 [73.3]	109.1 [8.9]	89.4 [11.2]	-0.8
16a ₂ - a ₄ ^[e]	66.4 [52.4]	55.7 [72.3]	109.6 [8.9]	88.7 [10.8]	+0.7
	62.7 [52.1]	58.9 [73.3]	110.2 [9.8]	88. 4 [9.8]	-0.2
	62.5 [52.2]	59.2 [72.4]	110.7 [9.8]	88.1 [9.8]	-0.2
18a ₁ -a ₄ ^[e]	53.3 ^[f] [51.9]	45.8 ^[f] [76.2]	99.8 ^[f] [8.9]	82.9 ^[f] [11.5]	-25.8 ^[g]
	53.0 [52.7]	46.4 [75.8]	101.8 [10.0]	82.8 [11.5]	-27.2 ^[g]
	52.6 [51.9]	45.2 [75.4]	99.6 [8.9]	81.2 [10.0]	-27.2

^[a] Für Lösungsmittel, Referenzsubstanzen und weitere Daten vgl. experimentellen Teil; gemessen bei 26 ± 1°C, wenn nicht anders angegeben; "J(²⁹Si¹³C) und "J(¹¹⁹Sn¹³C) in [Hz]; [br.] = verbreiterte ¹³C-Resonanz borgebundener C-Atome. – ^[b] δ^{27} Si = -10.9, -11.0 (Me₃SiC^{1,4,6}); ^{2}J (²⁹Si²⁹Si) = 11.2 bzw. 10.5 Hz. – ^[6] Aus den ¹³C-Satellitensignalen im ²⁹Si-NMR-Spektrum folgt, daß der kleinere Wert | ^{1}J (²⁹Si¹³C=) | zur Me₃Si-Gruppe gehört. – ^[6] Keine Zuordnung der Kopplung J(²⁹Si¹³C) zu Me₃Si oder Spiro-Si. – ^[6] Keine gesicherte Zuordnung der ¹³C- und ²⁹Si-NMR-Signale zu einem bestimmten Isomer. – ^[6] Die ¹³C-NMR-Signale haben die doppelte Intensität der entsprechenden Signale der beiden anderen Isomere. – ^{[6] 29}Si-NMR-Signale im Verhältnis von ca. 1:1.

wert sind sicherlich die Unterschiede zwischen dem 1,1'-Spirobisilol **1a** und dem 1,1'-Spirobigermol **2d**, die auf die höhere Elektronegativität des Germaniums zurückzuführen sind. Die übrigen Werte entsprechen im Trend den Befunden für die vergleichbaren Silol-Derivate^[4].

Komplexe ¹³C-NMR-Spektren erhält man besonders bei Gemischen, wie z. B. von 5f/6f oder der Monomeren 12a bzw. 13d mit den Dimeren 15 und bei den isomeren Metallkomplexen 16a₁-a₄ oder 18a₁-a₄. Bei den Metallkomplexen sind ²⁹Si-Satellitensignale entsprechend zu Kopplungskonstanten $J(^{29}Si^{13}C)$ besonders nützlich, um zwischen den verschiedenen Typen von Ring-Kohlenstoffatomen zu

$^{1}J(^{13}C)$ -Werte

unterscheiden. In den Metallkomplexen des 1,1'-Spirobisilols 12a ist eine Sorte von ¹³C(Si)-Kernen in einer quasiaxialen Position relativ zum anderen metallierten Ring und besitzt eine kleinere Kopplungskonstante $|^{1}J(^{29}Si^{13}C)|$ $(16a_1 - a_4: 52.1 - 53.1 \text{ Hz})$. Die zweite Art von ¹³C(Si)-Kernen steht in einer quasi-äquatorialen Position zum anderen metallierten Ring, so daß die größeren Kopplungskonstanten $|^{1}J(^{29}Si^{13}C^{4})|$ (16a₁-a₄: 72.4-73.3 Hz) mit dem größeren s-Charakter des Si-C-Hybridorbitals erklärt werden können. In den Spirosilanen 1a, c und 12a findet man Kopplungskonstanten ${}^{2}J({}^{29}\text{SiC}={}^{13}\text{C}{}^{2(3)}) \approx 8-11$ Hz, die im fünfgliedrigen Ring aus der Summe der Kopplungswege über zwei und drei Bindungen resultieren. Im borfreien 5-Silaspiro-[4.4]nona-1,3,6,8-tetraen 12a haben wir über eine 2D-¹³C/ ¹H-heteronukleare Verschiebungskorrelation die Möglichkeit genutzt, die relativen Vorzeichen^[15] der Kopplungskonstanten ${}^{2}J({}^{29}\text{SiC}={}^{13}\text{C}^{3})$ und ${}^{3}J({}^{29}\text{SiC}={}^{C3}\text{H})$ zu ermitteln. Beide Kopplungen (13.5 Hz) haben gleiches Vorzeichen. Da sicher anzunehmen ist, daß ${}^{3}J({}^{29}SiC=C^{3}H)$ wie in Vinylsilanen^[16] ein negatives Vorzeichen besitzt, gilt auch ²J(²⁹Si- $^{13}C=C^3$) < 0. Daraus folgt, daß der Kopplungsweg über drei Bindungen dominiert.

Immer wenn komplexe ¹H- und ¹³C-NMR-Spektren vorliegen, bieten ²⁹Si- oder ¹¹⁹Sn-NMR-Spektroskopie (falls anwendbar) eine nützliche Alternative, um bereits die Reaktionslösungen zu untersuchen. Dies führte zu ersten konkreten Hinweisen auf ein Silol 3c sowie auf das nichtcyclische Tri-1-alkinyl(monoalkenyl)silan 4c. Ebenso läßt sich die Oligomerisierung von 12a verfolgen, da neue ²⁹Si-Resonanz-Signale (um $\delta^{29}Si = +20$ bis +23) für 15 im erwarteten Bereich auftreten. Die Komplexierung des 1,1'-Spirobisilols 12a führt zu stark metallabhängigen Verschiebungen der ²⁹Si-NMR-Signale. Der Gewinn an Abschirmung des ²⁹Si-Kerns ist in den Cobalt-Komplexen 18a₁-a₄ etwa doppelt so hoch wie für entsprechende Silol-Komplexe^[4]. Die (OC)₃Fe-Silol-Komplexe haben stets ²⁹Si-Resonanzen mit um $\Delta = 6 - 7$ höheren Frequenzen gegenüber dem freien Silol^[4]. Entsprechend findet man auch für die hier besprochenen Bis(tricarbonyleisen)-Komplexe $16a_1 - a_4$ die ²⁹Si-Abschirmung um $\Delta = ca. 5$ höher als in 12a. – Eine Zuordnung der vier gefundenen ²⁹Si-NMR-Signale zu den jeweiligen meso- und rac-Isomerenpaaren in $16a_1 - a_4$ ergibt sich durch die absolute Konfiguration (Röntgenstrukturanalyse s.u.) von meso-16a₁ (δ^{29} Si = -0.8). Auch die ¹³C-NMR-Signale von $16a_1 - a_4$ ließen sich dadurch korrelieren (Tab. 1).

Besonders charakteristisch sind auch Änderungen der δ^{119} Sn-Werte, z. B. ausgehend von F (δ^{119} Sn = -348) über 7f (δ^{119} Sn = $+165.6^{[6c]}$) zu 8f (δ^{119} Sn = +8.2) und schließlich zum 1,1'-Spirobistannol 5f (δ^{119} Sn = -16.1) bzw. zu 6f (δ^{119} Sn = -106.3). Hier wird der typische Unterschied in der ¹¹⁹Sn-magnetischen Abschirmung für Beiträge von Fünfund Sechsringstrukturen^[17] deutlich. In Abb. 1 (s. o.) ist das ¹¹⁹Sn-NMR-Spektrum der Reaktionslösung von G und Et₃B gezeigt, das ebenso instruktiv ist und gemeinsam mit dem zugehörigen ¹³C-NMR-Spektrum sichere Strukturzuweisungen für 5g, 5g', 9g, 10g und 11g ermöglicht.

Kristallstrukturanalyse von meso-16a1

Das meso-Cyclodiastereomer $16a_1$ ist eines der vier NMR-spektroskopisch voneinander unterscheidbaren meso- und rac-Isomeren 16a1-a4 (Tab. 1), aus deren äquimolarem Gemisch der für die Röntgenstrukturanalyse verwendete Kristall beim Abkühlen der Pentanlösung auf - 78°C gewonnen wurde. Das aus dem 1,1'-Spirobisilol 12a hergestellte 16a1 ist unseres Wissens das erste strukturell untersuchte Molekül mit Ligand-Übergangsmetall-Fragment am Spiro-Silicium-Atom. Lediglich Kristallstrukturanalysen von n⁴-Komplexen monocyclischer Silole^[18-22] sowie von einem η^6 -Komplex am phenylsubstituierten Silol^[18] sind bislang bekannt. Im meso-Isomer 16a, liegt auch das erste Spiran mit zwei n⁴-gebundenen (OC)₃Fe-Fragmenten vor. Die Kristallstruktur von 16a1 ist zusammen mit ausgewählten Abständen und Winkeln in Abb. 2 wiedergegeben.

Die Molekülstruktur von $16a_1$ verdeutlicht die Cyclodiastereomerie der *meso*-Form (*cyclo-S,R*) mit entgegengesetzter absoluter Konfiguration der beiden an die (OC)₃Fe-Fragmente gebundenen cycloenantiotopen C₄Si-Ringe. Bei Anwendung der IUPAC-Prioritätsregeln ist der Silolring mit dem Fe1-Atom *cyclo-R*-enantiomer, der Silolcyclus mit dem Fe2-Atom dagegen *cyclo-S*-enantiomer.

Als Folge der Einbindung in zwei Silacyclopentadien-Ringe liegt das zentrale Si-Atom verzerrt tetraedrisch vor,

Abb. 2. Molekülstruktur von meso- μ -{ η^4, η^4 -2,7-Diethyl-1,4,6,9-tetramethyl-5-silaspiro[4.4]nona-1,3,6,8-tetraen)-bis(tricarbonyleisen) (**16a**₁); ausgewählte Atomabstände [Å] und Winkel [°]: Fe1-C1 2.146(5), Fe1-C3 2.046(6), Fe2-C10 2.052(6), Fe2-C12 2.159(5), Si-C1 1.828(6), Si-C9 1.881(6), C1-C2 1.437(8), C2-C3 1.413(8), C3-C4 1.417(8), Si-C4 1.860(5), Si-C12 1.876(5), Fe1-Si 2.863(2), Fe2-Si 2.874(2). - C1-Si-C9 114.0(2), Fe1-Si-Fe2 155.0(1), C1-Fe1-C4 72.0(2), C3-Fe1-Si 61.5(2), C1-Fe1-C3 67.6(2), C1-Fe1-C2 39.8(1), C1-Fe1-Si 39.6(1), Fe1-C1-C5 123.7(4), Fe1-C2-C6 127.4(4), Fe1-C19-O3 171.4(5); Ebene C1-C4/Ebene C9-C12 65.1; Ebene C1-Si-C4/Ebene C9-Si-C12 90.8; Ebene C1-Si-C4/Ebene C4-C9 32.9; Ebene C9-C12/Ebene C9-Si-C12 34.8; (C17-C18-C19)-Ebene von (OC)₃Fe1/(C20-C21-C22)-Ebene von (OC)₃Fe2 70.8

jedoch stehen die (C1–Si–C4)- und (C9–Si–C12)-Ebenen nahezu senkrecht (90.8°) aufeinander. Die Faltungswinkel dieser Ebenen gegen die durch die an zwei (OC)₃Fe-Gruppierungen als 4e-Ligand koordinierten planaren 1,3-Butadien-Einheiten C1, C2, C3, C4 und C9, C10, C11, C12 betragen 32.9 bzw. 34.8°. Sämtliche C-Atome beider η^4 -(1,3-Dien)-Einheiten sind innerhalb der Fehlergrenzen äquidistant [Mittelwert: 1.425(9) Å]. Die Abwinkelung der (C1–Si–C4)- und (C9–Si–C12)-Ebenen gegen die (C1–C4)bzw. (C9–C12)-Ebenen in beiden Silol-Ringen führt zu einem Interplanarwinkel von 70.8° zwischen den durch die C-Atome C17–C19 und C20–C22 der beiden (OC)₃Fe-Fragmente gelegten Ebenen.

In nicht an Metall koordinierten Silol-Verbindungen betragen die C-C-Abstände der 1.3-Dien-Gruppe 1.35 bzw. 1.47-1.51 Å^[20a]. Die Methyl-Substituenten an den koordinierten C-Atomen sind charakteristisch zum Metall hin abgewinkelt (Mittelwert 3.6°). Innerhalb der 1,3-Dien-Systeme läßt sich aus der Summe der C-C-C Bindungswinkel an C1, C4, C9 und C12 ein höherer sp³-Charakter als für die Atome C2 und C10 ableiten. Das Muster der relativ kurzen M-C-Bindungen entspricht weitgehend dem verwandter Verbindungen^[18b]. Die Abstände beider Fe-Atome zum Si-Atom [Fe1-Si = 2.863(2), Fe2-Si = 2.874(2) Å] deuten keine bindende Wechselwirkung an. Die Koordinationsgeometrie an beiden Metallen ist wie bei bekannten (OC)₃Fe-Dien-Komplexen^[19a] quadratisch-pyramidal, wobei zwei Carbonyl-C-Atome sowie die Mittelpunkte der koordinierten C=C-Bindungen die Basisebene beschreiben. Jeweils ein (Fe-C-O)-Winkel an jedem Fe-Atom weicht um ca. 8° von der Linearität ab, was auf intramolekulare Wechselwirkungen zu benachbarten CH₃-Gruppen [C8...O5 = 3.173(8), C16...O3 = 3.102(8) Å] zurückgeführt werden kann. Aus der Packung der **16a₁**-Moleküle im Kristallgitter lassen sich keine intermolekularen Wechselwirkungen ableiten.

Experimenteller Teil

Sämtliche Reaktionen wurden bei striktem Ausschluß von Luftsauerstoff und Feuchtigkeit in zuvor ausgeheizten Glasgefäßen unter Argon durchgeführt. Die C-, H-, B-, Co-, Fe-, Ge- und Si-Werte bestimmte man bei Dornis & Kolbe, Mülheim an der Ruhr. -DSC^[23]: Du Pont 9900. - IR^[24]: Nicolet 7000. - GC^[25a]: Sichromat 1 (Siemens); Bedingungen zur Trennung der 12a'-Isomere: KS PS240 (stat. Phase Methylsiloxan; Trägergas He). - MS^[25b]: EI-MS-Analysen (70 eV): Finnigan MAT CH5 für flüssige und feste Proben. - ¹H-NMR^[26a]. Bruker AC 200. - ¹¹B-NMR: Bruker AC 200^[26a] (64.2 MHz) und Bruker AM 500^[26b] (160.5 MHz), Et₂O BF₃ extern. - ¹³C-NMR^[26a]: Bruker AC 200 (50.3 MHz), AMX 400 (100.6 MHz), Me₄Si extern. - ²⁹Si-NMR^[26b]: Bruker AC 300 (59.7 MHz), refokussierte INEPT-Pulssequenz [basierend auf ${}^{3}J({}^{29}Si^{1}H_{Me})$ ca. 8 Hz bzw. ${}^{3}J({}^{29}Si^{1}H_{Cm})$ ca. 12 Hz] und ${}^{1}H$ -Entkopplung, Me₄Si extern. - ⁷³Ge-NMR^[26b]: Bruker AC 300 (10.4 MHz), $Me_4Ge extern. - Kristallstrukturanalyse^{[10]} von meso-16a_1$: Abb. 2, Tab. 2, 3. - Belichtungsapparatur^[27]: Hg-Mittel/Hochdrucklampe HPK 125 WIL, Philips.

Tab. 2. Angaben zur Kristallstrukturanalyse von 16a,

C₂₂H₂₄Fe₂O₆Si, Molmasse 524.2 g · mol⁻¹, Kristallgröße 0.25 × 0.42 × 0.42 mm, gelb, monoklin, Raumgruppe P₂₁/c (Nr. 14), a = 9.840(1), b = 16.098(3), c = 15.453(1) Å, β = 101.38(1)⁶, V = 2399.6 Å³, Z = 4, d_{ber} = 1.45 g · cm⁻³, µ (Mo-K_α) = 12.9 cm⁻¹, $\lambda = 0.71069$ Å, F(000) = 1080 e, Enraf-Nonius-CAD4-Diffraktometer, T = Raumtemp, Meßmethode ω-2Θ, [(sinΘ)/ λ]max = 0.65 Å⁻¹, gemessene Reflexe 5869 [±h, +k, +I], unabhängige Reflexe 5461, davon beobachtet 4104 [I > 2 σ (I)], Lösung der Struktur durch Schweratom-Methode (SHELX 86), Positionen der H-Atome berechnet und isotrop verfeinert, verfeinerte Parameter 376, R = 0.061, R_w = 0.063 [w = 1/ σ^2 (F_o)], max. Restelektronendichte 0.69 eÅ⁻³

Ausgangsverbindungen: M--C \equiv CR (M = Li, R = SiMe₃, Ph^[28]; Na, R = Me^[29a]; M = K, R = Ph^[29b]), Et₃B^[30] und CpCo(C₂H₄)₂^[31] sowie C^[32], F^[6a] und G^[32] wurden nach Literaturangaben hergestellt. – Bezogen wurden SiCl₄ (Aldrich), GeCl₄ (Schuchardt), SnCl₄, 2-Aminoethanol (Merck), MeCO₂H (Riedel), Maleinsäureanhydrid (MSA) (Aldrich) sowie (OC)₅Fe (BASF). – Die Lösungsmittel Pentan, Heptan, Paraffin, CD₂Cl₂, CDCl₃, Et₂O, Monoglyme (DME), Triglyme, THF, [D₈]THF, [D₆]Benzol, Toluol und [D₈]Toluol wurden vor Gebrauch vollständig entwässert und unter Argon aufbewahrt.

Tetra-1-alkinylsilane, -germane und -stannane

Tetra-1-propinylsilan (A): 51.15 g (0.3 mol) SiCl₄ tropft man in 1.5 h zu 83.78 g (1.36 mol) NaC≡CMe in ca. 1 l Et₂O/DME (7:3) (Temperaturanstieg auf 42 °C). Nach 4stdg. Erhitzen unter Rückfluß filtriert man 79.2 g Feststoff ab, engt das Filtrat bis ca. zur Hälfte ein und erhält beim Abkühlen 24.9 g (45%) beigefarbenes, kristallines A mit Schmp. 184.5 °C. Nach Konzentrieren der Mutterlauge werden beim langsamen Abkühlen auf -78 °C weitere 21.45 g (38%) A mit Schmp. 184 °C gewonner; DSC: U = 116 °C, Schmp. 167 °C, Zers. > 190 °C. – IR (Paraffin): $\tilde{v} = 2170$ (vs), 2040 (w) cm⁻¹ (C≡C). – EI-MS, m/z (%): 184 [M⁺] (95), 169 (100), 155 (13), 91 (26), 67 (42). $- {}^{1}$ H-NMR (CDCl₃): $\delta = 1.87. - {}^{13}$ C-NMR (CDCl₃): $\delta = 104.7 (\equiv CMe)$, 76.9 (\equiv CSi, $J_{SiC} = 126.9 Hz$), 5.0 (\equiv CCH₃). $- {}^{29}$ Si-NMR (CDCl₃): $\delta = -96.5. - C_{12}H_{12}$ Si (184.3): ber. C 78.27, H 6.57, Si 15.27; gef. C 78.18, H 6.69, Si 15.04.

Tab. 3. Atomkoordinaten und thermische Parameter [Å²] von 16a₁. $U_{eq} = 1/3 \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \bar{a}_i \bar{a}_j$

Atom	x	у	Z	U _{eq}
Fe1	0.7054(1)	0.1614(1)	0.7128(1)	0.046
Fe2	0.2227(1)	0.1952(1)	0.4538(1)	0.046
Si	0.4688(1)	0.2166(1)	0.5871(1)	0.038
01	0.9263(5)	0.0420(3)	0.7051(4)	0.098
02	0.8229(6)	0.2122(4)	0.8944(3)	0.099
03	0.5213(5)	0.0403(3)	0.7720(3)	0.072
O4	-0.0279(5)	0.0931(4)	0.4328(4)	0.093
05	0.3774(5)	0.0695(3)	0.3756(3)	0.070
06	0.1209(5)	0.2853(4)	0.2891(3)	0.092
C1	0.5715(5)	0.2672(3)	0.6842(4)	0.048
C2	0.7077(6)	0.2825(3)	0.6674(4)	0.053
C3	0.7370(5)	0.2254(4)	0.6041(4)	0.052
C4	0.6322(5)	0.1672(4)	0.5700(3)	0.046
C5	0.5186(7)	0.3174(4)	0.7548(4)	0.070
C6	0.8073(7)	0.3510(4)	0.7046(5)	0.078
C7	0.7753(8)	0.4301(5)	0.6500(6)	0.099
C8	0.6625(6)	0.1007(4)	0.5084(4)	0.058
С9	0.3700(5)	0.2907(3)	0.5038(4)	0.048
C10	0.2380(6)	0.3017(4)	0.5280(4)	0.052
C11	0.2008(5)	0.2325(4)	0.5762(4)	0.053
C12	0.2982(5)	0.1663(3)	0.5913(3)	0.045
C13	0.4310(7)	0.3529(4)	0.4514(4)	0.068
C14	0.1465(7)	0.3807(4)	0.5137(5)	0.071
C15	0.1897(9)	0.4435(5)	0.5863(6)	0.117
C16	0.2591(6)	0.0872(4)	0.6337(4)	0.064
C17	0.8402(6)	0.0890(4)	0.7085(4)	0.066
C18	0.7793(6)	0.1919(4)	0.8206(4)	0.065
C19	0.5861(6)	0.0883(4)	0.7429(4)	0.055
C20	0.0689(6)	0.1335(4)	0.4411(4)	0.069
C21	0.3253(6)	0.1201(4)	0.4109(4)	0.052
C22	0.1608(6)	0.2503(4)	0.3532(4)	0.064

Tetrakis(phenylethinyl)silan (**B**): Eine Lösung von 10.96 g (64.4 mmol) SiCl₄ in 20 ml Et₂O tropft man in 1 h zu 36.48 g (260 mmol) KC=CPh in 300 ml Et₂O (Temperaturanstieg auf 31 °C). Nach 24stdg. Erhitzen unter Rückfluß extrahiert man die Suspension 3 d (Soxhlet) und erhält nach Trocknen 17.2 g KCl (ber. 19.3 g KCl). Das feste **B** wird abfiltriert. Nach Waschen und Trocknen gewinnt man 21.39 g (77%) beigefarbenes **B** mit Schmp. 197°C (DSC: 196°C). – MS, *m/z* (%): 432 [M⁺] (100), 402 (5), 355 (20), 329 (10). – ¹³ C-NMR ([D₈]THF): $\delta = [122.7 (i), 133.1 (o), 129.3 (m), 130.6 (p), (Ph)], 107.4 (CPh, ²J_{SiC} = 26.6 Hz), 86.7 (=CSi, J_{SiC} = 129.5 Hz). – C₃₂H₂₀Si (432.6): ber. C 88.86, H 4.67, Si 6.50; gef. C 88.59, H 4.65, Si 6.70.$

Tetrakis[(trimethylsilyl)ethinyl]silan (C): Abweichungen von Literaturwerten^[32] ergaben sich für die ¹³C-NMR-Daten der Alkinyl-Kohlenstoff-Atome: ¹³C-NMR (75.5 MHz, [D₈]Toluol): δ {J(²⁹Si¹³C)} = 117.3 {75.3, 20.6} (=CSiMe₃); 106.0 {118.4, 11.8} (=CSi). - ²⁹Si-NMR (59.7 MHz, [D₈]Toluol): δ = 17.3 (SiMe₃); -100.3 (Si); ³J(²⁹Si²⁹Si) = 2.2 Hz.

Tetra-1-propinylgerman (**D**): Zu 55.5 g (895 mmol) NaC≡CMe in 500 ml Toluol tropft man in 25 min 42.9 g (200 mmol) GeCl₄ (schwache Wärmetönung). Nach 20stdg. Erhitzen unter Rückfluß filtriert man 54.5 g NaCl ab, engt bis etwa zur Hälfte ein und erhält beim langsamen Abkühlen (auf $-78 \,^{\circ}$ C) 26.8 g (59%) farbloses, festes **D** mit Schmp. 170–173 $^{\circ}$ C. Nach weiterem Einengen der Mutterlauge und langsamen Abkühlen auf $-78 \,^{\circ}$ C kristallisieren weitere 7.45 g (16%) **D** mit Schmp. 172 $^{\circ}$ C; DSC: 171.5 $^{\circ}$ C, Zers. > 200 $^{\circ}$ C. – IR (Paraffin): $\tilde{v} = 2180 \,\mathrm{cm^{-1}}$ (C \equiv C). – EI-MS, m/z (%): 229 [M – H] (78), 213 (24), 201 (17), 189 (26), 155 [M – GeH] (94), 137 (78), 113 (100). – ¹H-NMR (CDCl₃): $\delta = 1.89. - ^{13}$ C-NMR (CDCl₃): $\delta = 102.4 \,(\equiv$ CMe), 74.9 (\equiv CGe), 4.9 (CH₃C \equiv). – ⁷³Ge-NMR ([D₈]Toluol): $\delta = -170.0. - C_{12}H_{12}$ Ge (228.8): ber. C 62.98, H 5.29, Ge 31.73; gef. C 62.90, H 5.45, Ge 31.72.

Tetrakis(phenylethinyl)german (E): Die Lösung von 5.5 g (26 mmol) GeCl₄ in 15 ml Et₂O tropft man in ca. 30 min zur Suspension von 15.2 g (109 mmol) KC=CPh in 140 ml Et₂O (Temperaturanstieg bis zum Sieden). Nach 20stdg. Erwärmen unter Rückfluß extrahiert man (Soxhlet) 8.6 g verunreinigtes KCl (ber. 7.63 g) und erhält nach Einengen i. Vak. 10.1 g festen Rückstand, der aus 80 ml heißem Toluol/Hexan (ca. 60: 40) umkristallisiert wird. Man erhält 6.6 g (54%) farbloses E; DSC: $U = 183 \,^{\circ}$ C, Schmp. 190 $^{\circ}$ C. Aus dem Filtrat werden weitere 1.27 g (10%) E (Schmp. 187–188 $^{\circ}$ C) gewonnen. – MS, m/z (%): 478 [M⁺] (17), 404 (17), 326 (7), 276 (13), 202 (100), Ge₀). – ¹³C-NMR (CDCl₃): $\delta = [121.9 (i), 132.4 (o), 129.4 (m), 128.3 (p), (Ph)], 104.9 (CPh), 84.5 (CGe).$

Tetrakis(phenylethinyl)stannan (G)^[6a]: Die Lösung von 6.5 g (25 mmol) SnCl₄ in 50 ml Toluol tropft man in ca. 30 min bei $-78 \,^{\circ}$ C zu einer Suspension von 100 mmol LiC=CPh in 25 ml Toluol. Nach Erwärmen auf Raumtemp. wird 3 h unter Rückfluß erhitzt. Mittels Extraktion (Soxhlet, Hexan/Toluol ca. 1:2) und nach Einengen i. Vak. erhält man 8.5 g G (65%) als orangegelben Feststoff (Schmp. 170-174°C). – IR (Toluol): v \cong 2152 cm⁻¹ (C=C). – MS, m/z (%): 524 [M⁺] (7), 404 (50), 322 (78), 202 (100, Sn₀), 120 (38), 102 (56). – ¹³C-NMR (75.5 MHz in C₆D₆): δ [J(¹¹⁹Sn¹³C)] = 110.8 [238.5] (=CPh); 85.6 [1174.9] (=CSn); [121.8 (i), 132.3 (o), 129.2 (m), 128.4 (p), (Ph)].

Produkte 1-18

Aus A mit Et_3B (1a, 12a, 14a, 16a, 18a)

2,7-Bis(diethylboryl)-3,8-diethyl-1,4,6,9-tetramethyl-5-silaspiro-[4.4]nona-1,3,6,8-tetraen (1a)

a) Aus A mit Et_3B (1:5.4) in Toluol: 28.8 g (156 mmol) A und 82.1 g (838 mmol) Et_3B erhitzt man in 120 ml Toluol 4 d unter Rückfluß (nahezu quantitativer Umsatz von A). Nach Abdestillieren von überschüssigem Et_3B (12 Torr, Bad ≤ 60 °C) und Absublimieren kleiner Anteile von A (80 °C/0.001 Torr) erhält man 29.7 g (45%) farbloses 1a mit Sdp. 105 °C/0.001 Torr; 24.4 g brauner, hochzäher Rückstand.

b) 1a aus A mit Et₃B (1:5.6) ohne Verdünnungsmittel: 14.08 g (76 mmol) A und 41.54 g (424 mmol) Et₃B erhitzt man 4 d unter Rückfluß. Nach Abkondensieren von 35.51 g (362 mmol) Et₃B bei 0.001 Torr nimmt man den hochzähen Rückstand in Pentan auf und filtriert 8.10 g (44 mmol) ausgefallenes A (42proz. Umsatz) mit Schmp. 183 °C ab. Nach Einengen des Filtrats verbleiben 10.42 g (85%) schwachgelbes 1a (¹H-NMR). – MS, m/z (%) 380 [M⁺, B₂] (100), 361 (39), 323 (17), 295 (11), 282 (15), 253 (14), 243 (18), 215 (18), 192 (18), 147 (19), 107 (19), 67 (33), 41 (58). – ¹H-NMR (CDCl₃): $\delta = 2.11$ (CH₂C^{3,8}), 1.66, 1.56 (CH₃C^{1,4,6,9}), 1,38 (BCH₂), 1.00 (BCH₂CH₃), 0.92 (CH₃CH₂C^{3,8}). – ¹¹B-NMR (CDCl₃): $\delta = 86.0$ ($h_{1/2} = 1200$ Hz). – ¹³C-NMR (CDCl₃): $\delta = 24.3$, 13.5 (EtC^{3,8}); 22.1, 8.8 (Et₂B); 15.9, 12.5 (MeC^{1,4,6,9}); übrige NMR-Daten Tab. 1. – C₂₄H₄₂B₂Si (380.3): ber. C 75.41, H 11.12, B 5.68, Si 7.39; gef. C 75.30, H 11.28, B 5.71, Si 7.65.

Isomere 2,7-Bis(diethylboryl)-3,8-diethyl-1,4,6(9)-trimethyl-9(6)-methylen-5-silaspiro[4.4]nona-1,3,6(9)-triene (1a') durch UV-

Belichten von 1a in Pentan: Die farblose Lösung von 2.89 g (7.6 mmol) 1a in 70 ml Pentan wird beim 24stdg. UV-Belichten schwach gelb. Nach Einengen verbleiben als Rückstand gelbliche Spiroverbindungen 1a' [¹H-NMR: $\delta_{MeC^{14.69}} = 1.97$, 1.89, 1.58 (1a') neben 1.66, 1.56 (1a)].

Isomere 2,8-Diethyl-1,4,6(9)-trimethyl-9(6)-methylen-5-silaspiro[4.4]nona-1,3,6(9)-triene (12a') aus 1a' mit Eisessig: Zu dem in 15 ml THF gelösten 1a' pipettiert man 0.92 g (15.2 mmol) Eisessig (exotherme Reaktion). Nach 2stdg. Erhitzen unter Rückfluß wird THF i. Vak. (12 Torr) abdestilliert, der Rückstand in wenig Pentan aufgenommen und der Feststoff abfiltriert. Nach Trocknen erhält man 1.21 g (9.5 mmol) festes Et₂BOC(O)Me mit Schmp. 111 °C^[131]. - Beim Einengen des Filtrats i. Vak. (12 Torr) sublimiert das restliche Et₂BOC(O)Me bei 40 °C/0.001 Torr ab. Es verbleibt ein farbloser, flüssiger Rückstand von 12a' (Molmasse 244) mit Spuren m/z 304 (244 + MeCO₂H); GC/MS: 18.3% (m/z 244), 44.4% (m/z244), 29.7% (m/z 244) und 7.6% (m/z 244). - ¹H-NMR (CDCl₃): $\delta = 6.64$ (12a); neu: 6.58, 6.49, 5.21, 5.11, 5.0.

2,7-Diethyl-1,4,6,9-tetramethyl-5-silaspiro[4.4]nona-1,3,6,8-tetraen (12a): 8.6 g (143 mmol) Eisessig in 20 ml THF tropft man in 50 min zu 27.2 g (71 mmol) 1a in 80 ml THF (Temperaturanstieg auf 50°C). Nach 2stdg. Erhitzen unter Rückfluß engt man i. Vak. (12 Torr) ein, nimmt den breiigen Rückstand in Pentan auf, filtriert den Feststoff ab und erhält nach Trocknen i. Vak. 16.7 g (91%) $Et_2BOC(O)Me^{[33]}$ mit Schmp. 112-113 °C. - ¹H-NMR (C₆D₆): $\delta = 1.68 (CH_3), 0.93 (EtB). - {}^{11}B-NMR (C_6D_6): \delta = 56.4 (67\%), 15.0$ (sh = 8.4) (33%); ([D₈]THF): $\delta = 25.7$ (83%), 10.5 (17%). - ¹³C-NMR ([D₈]THF): $\delta = 172$ (br., CO), 22.8 (CH₃), 12 (br., CH₂B), 8.7 (CH₃CH₂B). - Das Filtrat wird i Vak. (12 Torr) eingeengt und aus dem trüben viskosen Rückstand bei ca. 40°C/0.001 Torr das restliche Et₂BOC(O)Me in die Kühlfalle (-78°C) sublimiert. Die Destillation liefert 14.04 g (80%; GC: 98.0proz.) farbloses, leicht bewegliches 12a (Sdp. 60 °C/0.001 Torr), das nach monatelangem Aufbewahren bei Raumtemp. vollständig polymerisiert. In Lösung (CDCl₃) erfolgt nach einigen Monaten bei Raumtemp. lediglich teilweise eine Cyclodimerisation zu 15a (zahlreiche charakteristische ¹H-, ¹³C- und ²⁹Si-NMR-Signale): ¹H-NMR (500 MHz, CDCl₃): $\delta = 6.58, 6.54, 6.52, 6.38, 5.93, 5.90, 3.17, 3.16, 3.13, 3.11$ [neue olefinische und aliphatische ¹³C(H)-Resonanz-Signale]. - ¹³C-NMR $(125.5 \text{ MHz}, \text{CDCl}_3): \delta = 147.9, 147.2; 146.1, 144.2, 131.0, 130.2, 69.2,$ 68.9, 69.1, 68.8 (2D-13C/1H-Korrelationen zeigen, daß die neuen ¹³C(H)-Resonanz-Signale in dieser Reihenfolge mit den ¹H-NMR-Signalen zusammengehören), 45.7, 45.6, 45.4, 45.3, 43.9, 43.85, 43.77, 43.7, 42.3, 42.2, 42.04, 41.97 (neue ¹³C-NMR-Signale für aliphatische quaternäre C-Atome). – ²⁹Si-NMR (99.5 MHz, CDCl₃): δ = 19.8, 19.9, 20.5, 20.7, (1:1:1:1); 23.3, 24.0 (2:2); ${}^{2}J({}^{29}Si^{29}Si) = 6.7$ Hz. -IR (unverdünnt): $\tilde{v} = 1595 \text{ cm}^{-1}$ (=CH) 1540 (C=C). – MS, m/z(%): 244 [M⁺] (100), 229 (66), 215 (53), 201 (15), 187 (21), 185 (22), 135 (24), 109 (21), 67 (25), 59 (53). - ¹H-NMR (CDCl₃): $\delta = 6.64$ $({}^{4}J = 1.8 \text{ Hz}, \text{HC}^{3,8})$, [1.80 $({}^{4}J = 1.8 \text{ Hz})$, 1.66 $(\text{CH}_{3}\text{C}^{1,4,6,9})$], 2.28 $(CH_2C^{2,7})$, 1.06 $(CH_3CH_2C^{2,7})$. - ¹³C-NMR $(CDCl_3)$: $\delta = 23.4$, 13.1 (EtC^{2,7}); 17.3 (MeC^{4,9}); 12.6 (MeC^{1,6}); übrige NMR-Daten Tab. 1. -C16H24Si (244.5): ber. C 78.61, H 9.90, Si 11.49; gef. C 78.28, H 9.83, Si 11.84.

14a aus 12a mit Maleinsäureanhydrid (MSA): 2.33 g (9.5 mmol) 12a gibt man rasch zu 1.6 g (16.3 mmol) MSA in 25 ml Heptan (Temperaturanstieg auf 33 °C). Nach 5stdg. Erhitzen unter Rückfluß filtriert man die sehr voluminöse Suspension ab, wäscht den Feststoff mehrmals mit Heptan, trocknet i. Vak. und erhält 3.1 g (89%) weißes 14a mit Schmelzintervall 194–222 °C. – EI-MS, m/z (%): 412 [M⁺ – 28] (15), 383 (22), 329 (34), 234 (100), 162 (62), 147 (95). – ¹H-NMR (CDCl₃): $\delta = 5.81$, 5.74 (HC=), 3.34 (HCC=O), 2.10 (H₂CC=), 1.63 (H₃CC=), 1.39, 1.38, 1.37 (H₃C), 1.02, 1.01 (CH₃CH₂). - ¹³C-NMR (CDCl₃): $\delta =$ 170.51, 170.46, 170.3, 170.2 (C=O), 150.1, 149.8, 148.6, 148.4 (C=), 127.3, 127.0, 125.8, 125.5 (CH=), 52.1, 52.0, 51.8, 51.4, 51.3, 51.1 (CH), 42.4, 39.6, 39.5, 39.21, 39.18, 36.2, 36.1 (C_{quart}), 22.99, 22.94, 22.91, (CH₂), 15.8, 15.7, 14.9 (CH₃CH₂), 13.8, 13.7, 13.0, 10.8, 10.7, 10.6, 10.5 (CH₃C). - C₂₄H₂₈O₆Si (440.6): ber. C 65.43, H 6.40, Si 6.38; gef. C 65.48, H 6.10, Si 6.10.

 $rac,meso-\mu$ - $(\eta^4,\eta^4-2,7-Diethyl-1,4,6,9-tetramethyl-5-silaspiro[4.4]$ nona-1,3,6,8-tetraen)-bis(tricarbonyleisen)-Komplexe $(16a_1-a_4)$ aus 12a mit (OC)₅Fe (Verh. ca. 1: 3.3): 6.6 g (27 mmol) 12a und 17.74 g (90.6 mmol) (OC)₅Fe in ca. 250 ml THF entwickeln beim UV-Belichten in 2.5 h ca. 1800 ml, in 7 h insgesamt 2080 ml (86%) CO. Nach Einengen der rotbraunen Lösung lassen sich aus dem viskosen Rückstand 10 g (71%) rotes, viskoses (16a1--a4)-Gemisch (1H-NMR: 1:2:1) mit Sdp. 125°C/0.001 Torr abdestillieren. - MS, m/z (%): 524 [M⁺] (48), 496 (69), 468 (27), 440 (48), 412 (89), 384 (100), 356 (46), 352 (26), 192 (14), 178 (26), 56 (14). - ¹H-NMR (C_6D_6) : $\delta = 4.68, 4.65, 4.63 (1:2:1, HC^{3,8}), 2.3, 1.8 (CH_2C^{2,7}), 1.65,$ 0.94 (CH₃C^{1,4,6,9}), ca. 1.0 (CH₃CH₂C^{2,7}). - ¹³C-NMR (C₆D₆): $\delta = 213.0, 212.9$ (CO), 23.2, 23.1, 22.6, 15.4, 15.3 (EtC^{2,7}, jeweils 1:1:2); 20.4, 20.3, 17.7, 17.6 (MeC^{4,9}); 16.3, 16.1, 13.4, 13.3 (MeC^{1,6}); übrige NMR-Daten Tab. 1. - C₂₂H₂₄Fe₂O₆Si (524.2): ber. C 50.02, H 4.62, Fe 21.33, Si 5.36; gef. C 50.16, H 4.84, Fe 21.15, Si 5.79.

Isolieren von meso-16a₁: Die Lösung von ca. 5 g (16a₁-a₄)-Gemisch in wenig Pentan wird langsam auf -78 °C abgekühlt, wobei ca. 0.98 g orangegelbes 16a₁ mit Schmp. 107 °C (DSC) erhalten werden. Nach Einengen der Mutterlauge verbleibt gelbbraunes, viskoses (16a₂-a₄)-Gemisch. – meso-16a₁: MS, m/z (%): 524 [M⁺] (26), 496 (34), 468 (17), 440 (36), 412 (84), 384 (100), 356 (45), 352 (28), 192 (12), 178 (19). – ¹H-NMR (C₆D₆): $\delta = 4.68$ (HC^{3.8}), 2.07, 1.89 (CH₂C^{2.7}), 1.65, 0.94, (CH₃C^{1,4,6.9}), 0.90 (CH₃CH₂C^{2.7}). – ¹³C-NMR (C₆D₆): $\delta = 213.0$ (CO), 22.7, 15.2 (EtC^{2.7}); 20.5 (MeC^{4.9}); 13.5 (MeC^{1.6}); übrige NMR-Daten Tab. 1. – Röntgenstrukturanalyse Abb. 2, Tab. 2, 3. – C₂₂H₂₄Fe₂O₆Si (524.2): ber. C 50.02, H 4.62, Fe 21.33, Si 5.36; gef. C 50.05, H 4.60, Fe 21.18, Si 5.14.

(cyclo-R,S)-Tricarbonyl(η⁴-2,7-diethyl-1,4,6,9-tetramethyl-5-silaspiro[4.4]nona-1,3,6,8-tetraen)eisen (17a) und 16a aus 12a mit (OC)₅Fe (Verh. ca. 1:2.2): 1.34 g (5.5 mmol) 12a und 2.35 g (12 mmol) (OC)₅Fe in 150 ml THF entwickeln bei Raumtemp. während 16stdg. UV-Belichten 350 ml (15.6 mmol) CO. Die anfangs gelbe Lösung wird orangebraun. Nach Einengen i. Vak. (10 Torr) destillieren 1.99 g orangerotes, viskoses Gemisch aus 17a und 16a mit Sdp. 95-102°C/0.001 Torr. - 17a: MS, m/z (%): 383 [M⁺] (3), 356 (17), 328 (17), 300 (100), 298 (28). - ¹H-NMR (C₆D₆): δ = 6.66, 6.62, 6.26 (HC^{3,8}). - 16a: MS, m/z: 524 [M⁺]. - ¹H-NMR (C₆D₆): δ = 4.88, 4.85, 4.69, 4.65, 4.63 (HC^{3,8}).

rac,meso-µ-(η^4 , η^4 -2,7-Diethyl-1,4,6,9-tetramethyl-5-silaspiro-[4.4]nona-1,3,6,8-tetraen)-bis[(cyclopentadienyl)cobalt]-Komplexe (18a₁-a₄): 1.44 g (8 mmol) CpCo(C₂H₄)₂ und 0.91 g (3.72 mmol) 12a vereinigt man bei -78 °C in 15 ml Toluol, läßt unter Rühren die Temp. bis auf 20 °C ansteigen und erhält nach 30 min bei Raumtemp. 30 ml Gas. Weitere 30 min wird auf 40-80 °C erwärmt. Insgesamt 296 ml (85%) C₂H₄ (MS) werden frei. Nach Einengen der dunkelroten Lösung i. Vak. (12 Torr) destilliert man bei 0.001 Torr (Bad ≤ 80 °C) alles Flüchtige ab, nimmt den Rückstand in wenig Pentan auf und filtriert die Schwebstoffe ab. Beim langsamen Abkühlen auf -78 °C bilden sich 0.84 g (31%) dunkelrote Kristalle von 18a₁-a₄ mit Schmp. 96-98 °C (DSC: 83 °C). - MS, m/z (%): 492 [M⁺] (100), 384 [M - C₈H₁₂] (29). - ¹H-NMR (C₆D₆): δ = 4.90, 4.88, 4.63 (2:1:1, HC^{3.8}), 4.48 (Cp), 2.46, 2.22 (CH₂C^{2.7}), 1.57, 1.53, 1.52; 0.79, 0.76, 0.74 (CH₃C^{1.4,6.9}), 1.30, 1.17 (CH₃CH₂C^{2.7}). - ¹³C-NMR ([D₈]Toluol, 100.6 MHz): δ = 80.4, 80.35, 80.33 (Cp, 1:1:2), 24.1, 23.6, 23.5 (CH₂C^{2,7}, 1:1:2), 21.9, 21.8, 19.1, 17.9, 15.4, 15.12, 15.07, 15.0 (CH₃); übrige NMR-Daten Tab. 1. - C₂₆H₃₄Co₂Si (492.5): ber. C 63.41, H 6.96, Co 23.94, Si 5.71; gef. C 63.43, H 6.97, Co 23.87, Si 5.79.

Aus B mit Et₃B (1b, 3b, 12b)

2,7-Bis(diethylboryl)-3,8-diethyl-1,4,6,9-tetraphenyl-5-silaspiro-[4.4]nona-1,3,6,8-tetraen (**1b**) und Nachweis von 3-(Diethylboryl)-4-ethyl-2,5-diphenyl-1,1-bis(phenylethinyl)silol (**3b**); 2.15 g (5 mmol) **B** in 30 ml Et₃B erhitzt man 17 d unter Rückfluß. Nach Einengen der klaren Lösung verbleiben 2.66 g gelbbrauner, breiiger Rückstand. – MS, m/z (%): 432 [M⁺, **B**]; 530 [M⁺, **3b**], 502 [M – 28]; 628 [M⁺, **1b**], 600 [M – 28], 572 [600 – 18]. – ¹H-NMR (CDCl₃): δ = 7.4–6.5 (Ph), 2.62, 2.36, 1.70, 1.54, 1.21, 0.96 u.a. – ¹³C-NMR (CDCl₃): δ = 159.2 bis 126, 24.7 (CCH₂), 21.7 (BCH₂), 14.2 (CH₂CH₃), 9.65, 9.30, 8.95, (BCH₂CH₃); wenig 87.7, 86.7, 86.4 (SiC=), 109.4, 108.2, 106.8 (SiC=C).

Beim 11tägigen Erhitzen des (1b/3b)-Gemischs in Et₃B unter Rückfluß bleibt das ³H-NMR-Spektrum unverändert, während im ¹³C-NMR-Spektrum danach keine Signale der SiC=C-Gruppierung mehr nachzuweisen sind.

Nachweis von 2.7-Diethyl-1.4,6,9-tetraphenyl-5-silaspiro[4.4]nona-1,3,6,8-tetraen (12b): Nach Versetzen des (1b/3b)-Gemischs in THF mit Eisessig erhält man nach 2stdg. Rühren bei Raumtemp. und Einengen i. Vak. (7 Torr) Et₂BO(CO)Me (Sublimation, 0.001 Torr) sowie gelborgangefarbenes, festes 12b. – MS, m/z (%): 492 $[M^+, 12b]$ (34), 464 (100), 436 (25), 333 (16), 231 (14), 149 (17), 129 (17), 105 (55). – ¹H-NMR (CDCl₃): $\delta = 2.71$, 2.53 (=CCH₂), 1.30, 1.21 (CH₃), 7.2 (C₆H₅; viel zu hohe Intensität). – ¹³C-NMR (CDCl₃): $\delta = 157.9$, 157.4, 157.2, 155.5, 143.2, 141.1, 138.7, 137.9, 137.7, 136.4, 136.2 (s); 153.8, 153.4, 145.1, 144.4, 132.1, 131.0 (d), (*i*, C²⁻⁵); 128.62, 128.58, 128.53, 128.4, 128.3, 128.2, 128.1, 127.22, 127.18, 127.0, 126.6, 126.55, 126.5, 125.9, 125.8 (*o*, *m*, *p*).

Aus C mit Et_3B (1c, 3c, 4c)

2,7-Bis (diethylboryl)-3,8-diethyl-1,4,6,9-tetrakis (trimethylsilyl)-5-silaspiro [4.4]nona-1,3,6,8-tetraen (1c), 3-(Diethylboryl)-4-ethyl-2,5-bis (trimethylsilyl)-1,1-bis [(trimethylsilyl)ethinyl]silol (3c) und Bis [(Z)-2-(diethylboryl)-1-(trimethylsilyl)-1-butenyl]bis [(trimethylsilyl)ethinyl]silan (4c): Zu festem C (1.5 g, 3.6 mmol) werden bei Raumtemp. 4 g (40 mmol) Et₃B gegeben. Die Mischung wird 72 h unter Rückfluß erhitzt. Die fraktionierende Destillation liefert 1.77 g (80.6%) reines (>95%) 1c als farblose, ölige Flüssigkeit (Siedebereich 140 – 150°C/0.001 Torr). Wird die Reaktionslösung nach 1tägigem Rückflußerhitzen NMR-spektroskopisch untersucht, findet man neben C, Et₃B und 1c noch zwei unbekannte Verbindungen sowie 3c und geringe Mengen der nicht-cyclischen Verbindung 4c.

1c: ¹H-NMR (C₆D₆): $\delta = 2.25$, 0.91 (EtC^{3,7}), 1.04, 0.98 (Et₂B); 0.18, 0.05 (Me₃SiC^{1,4,6,8}). - ¹³C-NMR (C₆D₆): $\delta = 30.4$, 14.8 (EtC^{3,7}); 23.1, 9.7 (Et₂B); 1.9, 1.4 (Me₃SiC^{1,4,6,8}). - ¹¹B-NMR (C₆D₆): $\delta = 87.0$ ($h_{1/2} = 1300$ Hz); weitere NMR-Daten Tab. 1. - C₃₂H₆₆B₂Si₅ (612.9); ber. C 62.71, H 10.85; gef. C 62.18, H 10.56.

3c: ¹H-NMR (C₆D₆): $\delta = 2.10, 0.99$ (EtC⁴), 1.05, 0.98 (Et₂B); 0.37, 0.28 (Me₃SiC^{2.5}); 0.04 (Me₃SiC²). $-^{13}$ C-NMR (C₆D₆): $\delta = 188.1$ (C³), 174.3 (C⁴); 140.8 (C²); 133.9 (C⁵); 117.4 (=CSi); 108.0 (=CSiMe₃); 30.3, 14.8 (EtC⁴); 23.0, 9.8 (Et₂B); 1.5, 1.6 (Me₃SiC^{2.5}); -0.3 (Me₃SiC²). $-^{29}$ Si-NMR (C₆D₆): $\delta = -9.4, -9.5$ (SiC^{2.5}); -18.6 (SiC=); -32.8 (Si).

4c: ¹³C-NMR ([D₈]Toluol): δ = nicht beobachtet (=CB); 130.6 (=CSi); 115.9 (=CSiMe₃); 110.0 (=CSi); [31.2, 14.5 (EtC=)]; [21.5, 9.4 (Et₂B)]; 2.3 (Me₃SiC=); -0.3 (Me₃SiC=). - ²⁹Si-NMR ([D₈]Toluol): δ = -3.6 (SiC=); -17.9 (SiC=); -87.3 Si (C=)₃(C=).

Aus D mit Et_3B (2d, 13d)

2,7-Bis(diethylboryl)-3,8-diethyl-1,4,6,9-tetramethyl-5-germaspiro[4.4]nona-1,3,6,8-tetraen (2d): 24 g (105 mmol) D und 79.9 g (816 mmol) Et₃B erhitzt man zum Sieden, wobei kurzfristig lebhafter Rückfluß (Reaktion) einsetzt. Nach 1−2stdg. Erhitzen destilliert man i. Vak. (12 Torr; Bad ≤60 °C) 58.1 g (ber. 59.4 g) überschüssiges Et₃B ab. Aus dem Rückstand werden 37.7 g (84.5%) farbloses 2d mit Sdp. 115 °C/0.001 Torr erhalten. – MS, m/z (%): 426 [M⁺] (60), 411 (8), 397 (100), 339 (27), 235 (24), 221 (38), 113 (42), 41 (89). – ¹H-NMR (CDCl₃): $\delta = 2.09$ (CH₂C^{3,8}), 1.80, 1.69 (CH₃C^{1,4,6,9}), 1.38 (CH₂B), 1.00 (BCH₂CH₃), 0.93 (CH₃CH₂C^{3,8}). – ¹¹B-NMR (CDCl₃): $\delta = 85.8$ ($h_{1/2} = ca. 1000$ Hz). – ¹³C-NMR (CDCl₃): $\delta = 24.3$, 13.8 (EtC^{3,8}); 22.3, 8.9 (Et₂B); 17.8, 14.4 (MeC^{1,4,6,9}); übrige NMR-Daten Tab. 1. – C₂₄H₄₂B₂Ge (424.8): ber. C 67.87, H 9.96, B 5.08, Ge 17.09; gef. C 67.61, H 10.26, B 5.12, Ge 17.09.

UV-Belichten von 2d: 3.63 g (8.5 mmol) 2d in 70 ml Pentan werden 24 h belichtet. Die zunächst farblose Lösung wird intensiv gelb. Nach Einengen i. Vak. (12 Torr) verbleibt gelbes, mäßig viskoses 2d (¹H-NMR).

2,7-Diethyl-1,4,6,9-tetramethyl-5-germaspiro[4.4]nona-1,3,6,8-tetraen (13d): Die Lösung von 9.5 g (158 mmol) Eisessig in 15 ml THF wird in ca. 30 min zu 33.5 g (79 mmol) 2d in 120 ml THF getropft (Temperaturanstieg auf 45°C). Nach 2stdg. Erhitzen unter Rückfluß engt man i. Vak. (12 Torr) ein (Bad ≤60°C), nimmt den trüben, viskosen Rückstand in Pentan auf und filtriert den Feststoff ab. Nach Trocknen i. Vak. erhält man 18.8 g (93%) Et₂BOC(O)Me mit Schmp. 111-112°C^[33]. - Das Filtrat wird i. Vak. (12 Torr) eingeengt und aus dem Rückstand bei ca. 40°C/0.001 Torr restliches Et₂BOC(O)Me absublimiert. Man erhält beim Destillieren 21.1 g (93%; GC: 98.8proz.) farbloses 13d (Sdp. 65°C/0.001 Torr), das beim monatelangen Stehenlassen um 8 °C vollständig polymerisiert. - In Lösung (CDCl₃) wird nach einigen Monaten bei Raumtemp. nur teilweise eine Oligomerisierung, bevorzugt eine Cyclodimerisierung zu 15d beobachtet. Hierfür sprechen wie bei 15a zahlreiche neue ¹H- und ¹³C-NMR-Signale im gleichen Bereich, wie dort angegeben. 13d: IR (unverdünnt): $\tilde{v} = 1600 \text{ cm}^{-1}$ (=CH), 1535 (C=C). - MS, m/z (%): 290 [M⁺] (57), 275 (60), 261 (66), 222 (45), 207 (46), 161 (66), 147 (100), 113 (39), 91 (25), 41 (22). - ¹H-NMR (CDCl₃): $\delta = 6.50$ (HC^{3,8}, J = 1.8 Hz), 1.91, 1.78 (H₃CC^{1,4,6,9}), 2.26 $(CH_2C^{2,7})$, 1.04 $(CH_3CH_2C^{2,7})$. - ¹³C-NMR $(CDCl_3)$: $\delta = 23.2$, 13.4 (EtC^{2,7}); 19.1 (MeC^{1,6}); 14.6 (MeC^{4,9}); übrige NMR-Daten Tab. 1. -C₁₆H₂₄Ge (289.0): ber. C 66.51, H 8.37, Ge 25.12; gef. C 65.95, H 8.40, Ge 25.62.

Aus E mit Et₃B (2e, 13e)

2,7-Bis(diethylboryl)-3,8-diethyl-1,4,6,9-tetraphenyl-5-germaspiro[4.4]nona-1,3,6,8-tetraen (2e): 10.8 g (23 mmol) E erhitzt man in 40 ml Et₃B 8 h unter Rückfluß, engt i. Vak. (0.001 Torr/Bad ≤ 60 °C) ein und erhält 15.4 g (100%) rotes, hochzähes 2e, das in ca. 40 ml Pentan beim langsamen Abkühlen auf -78 °C auskristallisiert. Man isoliert 6.78 g (44%) kristallines, gelbes 2e mit Schmp. 73 °C (DSC); nach Einengen erhält man weitere 8.0 g (52%) 2e (verunreinigt). - MS, *m*/*z* (%): 674 [M⁺] (97), 645 (10), 175 (51), 113 (18), 69 (33), 41 (100). - ¹H-NMR (CDCl₃): $\delta = [7.10 (14 \text{ H}), 6.92 (6 \text{ H}), Ph^{1,4,6.9}], 2.37 (CH₂C^{3,8}), 1.50 (BCH₂, br.), 0.96 (CH₃CH₂C^{3,8}, CH₃CH₂B). - ¹¹B-NMR (CDCl₃): <math>\delta = ca. 86. - ^{13}C-NMR (CDCl₃): <math>\delta = 167.2 (C^{2,7}), 155.2 (C^{3,8}), [140.9, 140.8, 140.1, 136.4 (C^{1,4,6.9}, i)], [128.4, 128.3, 128.03, 127.96 (o,$ *m*)], [125.9, 125.4 (*p*) (Ph)]; 24.8, 14.2 (EtC^{3,8}); 22.0, 9.4 (Et₂B). - C₄₄H₅₀B₂Ge (673.1): ber. C 78.52, H 7.49, B 3.21, Ge 10.79; gef. C 78.99, H 7.58, B 3.35, Ge 10.35.

2,7-Diethyl-1,4,6,9-tetraphenyl-5-germaspiro[4.4]nona-1,3,6,8-tetraen (13e): Die Lösung aus 3.45 g (513 mmol) 2e in 20 ml Et₂O versetzt man mit 0.7 g (12 mmol) Eisessig und erwärmt 2.5 h unter Rückfluß. Nach Einengen i. Vak. (10 Torr) sublimiert man i. Vak. (0.001 Torr; Bad ≤ 60 °C) Et₂BOC(O)Me^[33] ab und erhält 2.63 g (95%) zitronengelbes 13e [Schmp. (DSC) 173 °C; U = 159 °C (aus Heptan)]. – MS, m/z (%): 538 [M⁺] (100), 509 (21), 408 (31), 333 (14), 215 (22), 202 (20), 175 (27), 151 (31), 129 (16), 115 (26), 91 (27). – ¹H-NMR (CDCl₃): $\delta = [7.39 (p), 7.16 (o, m)$ (Ph]], 2.59 (CH₂C=), 1.24 (CH₃). – ¹³C-NMR (CDCl₃): $\delta = 153.3 (C^{2,7})$, 140.9 (C^{3,8}), 141.6, 139.6, 138.3, 134.3 (C^{1,4,6,9}, *i*), [128.6, 128.3, 128.2, 126.8 (o, m), 127.2, 125.8 (p) (Ph)]; 24.9, 13.8 (EtC^{2,7}). – C₃₆H₃₂Ge (537.2): ber. C 80.49, H 6.01, Ge 13.51; gef. C 80.30, H 5.81, Ge 13.79.

Aus F mit Et₃B (5f, 6f, 7f, 8f)

2,6,9-Tris(diethylboryl)-3,6,8-triethyl-1,4,7,9-tetramethyl-5-stannaspiro[4.4]nona-1,3,7-trien (5f), 1,4-Bis(diethylboryl)-1,3,7,8,9pentaethyl-2,4,6,10-tetramethyl-5-stanna-8-boraspiro[4.5]deca-2,6,9-trien (6f), Nachweis von 7f und 8f: Zu festem F (1.37 g, 5 mmol) werden bei -78° C 2 g (20 mmol) Et₃B gegeben. Innerhalb von 2 h wird auf -20° C erwärmt, wobei sich F bei ständigem Durchmischen allmählich löst. Die NMR-spektroskopische Kontrolle (¹¹⁹Sn-NMR) deutet neben F zunächst die Bildung von $7f^{[6c]}$ an. Dann entsteht zwischen -20 und 0°C innerhalb von 6 h 8f, aus dem bei Raumtemp. (nach 12 h) schließlich das (5f/6f)-Gemisch gebildet wird, neben wenig (<10%, ¹¹⁹Sn-, ¹³C-NMR) weiteren nicht identifizierten Zinn-Verbindungen. Beim Destillationsversuch (140 bis 160°C/0.001 Torr) tritt weitgehend Zersetzung ein, lediglich eine geringe Menge verunreinigtes 5f (ohne 6f) wird aufgefangen. Hierzu gehört (¹¹B-NMR) ein Hexaalkyl-2,3,4,5-tetracarba-nido-hexaboran(6) $[\delta^{11}B = +18.5 (B^2), -44.5 (B^1)].$

5f: ¹H-NMR (einige relevante Signale mit Zuordnung aus 2D-¹³C/¹H-Verschiebungskorrelationen; 300 MHz, C₆D₆): δ [J(¹¹⁹Sn-¹H)] = 1.86 [44.3], 1.83 [42.7] [MeC^{1.4}); 1.86 [70.5] (MeC⁶); 1.74 [2.8] (MeC⁸). - ¹³C-NMR (75.5 MHz, C₆D₆): δ [J(¹¹⁹Sn¹³C)] = 145.6 [10.8] (C⁷); 135.2 [12.6] (C⁸); 75.8 [30.6] (C⁹); 71.0 [22.8] (C⁶); 29.7 [59.2], 13.2 (EtC³); 26.3 [28.7], 16.6 (EtC⁹), 26.0. [51.2], 14.9 (EtC⁷); 22.4 [75.4], 18.4 [66.4] (MeC^{1.4}); 20.8 [28.7] (MeC⁶); 20.0 [62.8] (MeC⁸), 15.3, 9.2 (Et₂C^{6.9}); 22.5, 8.2 (Et₂BC²); übrige NMR-Daten Tab. 1. - ¹¹B-NMR (160.5 MHz in C₆D₆): δ = +70 bis +90 (extrem breites, unsymmetrisches Signal).

6f: ¹³C-NMR (75.5 MHz, C₆D₆): δ [J^{119} Sn¹³C)] = 167.4, 166.5 (C^{7,9}); 148.3 [388.7], 146.3 [368.9] (C^{6,10}); 145.6 [18.0] (C³); 136.5 [16.2] (C²); 75.3 (C¹); 65.4 (C⁴); 28.3 [30.5], 17.1 (EtC¹); 24.1 [59.2], 15.0 (EtC³); 29.4 [61.0], 15.1, 24.6 [64.4], 15.1 (EtC^{7,9}); 23.1 [59.6], 23.0 [50.3] (MeC^{6,10}); 21.5 [32.3] (MeC⁴); 21.3 [62.8] (MeC²). – ¹¹B-NMR (160.5 MHz, C₆D₆): δ = +70 bis + 90 (extrem breites, unsymmetrisches Signal). – ¹¹⁹Sn-NMR (111.9 MHz, C₆D₆): δ = 106.3.

8f: ¹³C-NMR (eindeutig zugeordnete Signale, CD₂Cl₂; 253 K): δ [J(¹¹⁹Sn¹³C)] = 169.7 [68.0] (=CBEt₂); 145.8 [17.4] (C⁴); 118.3 [52.4] (=CMe); 83.6 [303.5] (=CB,Sn); 75.4 [55.6] (C²); 67.3 [57.2] (C⁵). - ¹¹⁹Sn-NMR (CD₂Cl₂, 253 K): δ = +8.2.

Aus G mit Et₃B (5g, 5g', 9g, 10g, 11g)

Stereoisomere 2,6,9-Tris (diethylboryl)-3,6,8-triethyl-1,4,7,9-tetraphenyl-5-stannaspiro[4.4]nona-1,3,7-triene (**5g**, **5g**'), 2,7-Bis (diethylboryl)-3,8-diethyl-1,4,6,9-tetraphenyl-5-stannaspiro[4.4]nona-1,3,6,8-tetraen (**9g**), 2-(Diethylboryl)-3,7,8,9-tetraethyl-1,4,6,10-tetraphenyl-5-stanna-8-boraspiro[4.5]deca-1,3,6,9-tetraen (**10g**) und 2,3,4,8,9,10-Hexaethyl-1,5,7,11-tetraphenyl-6-stanna-3,9-dibora-[5.5]undeca-1,4,7,10-tetraen (**11g**): Zu festem G (1.31 g, 2.5 mmol) werden bei $-78 \degree C 2 g$ (20 mmol) Et₃B gegeben. Die Mischung wird auf 0°C gebracht, ohne daß eine Reaktion oder Lösung von G beobachtet wird. Erst bei Raumtemp. deutet schwache Gelbfärbung der flüssigen Phase den Reaktionsbeginn an. Nach 5 d bei Raumtemp. entsteht eine homogene Lösung, sehr wenig elementares Zinn hat sich abgesetzt. Aufgrund der ¹¹⁹Sn-NMR- (Abb. 1) sowie ¹Hund ¹³C-NMR-Daten haben sich **5g**, **5g'**, **9g**, **10g** und **11g** gebildet, die bisher nicht getrennt werden konnten.

5g, **5g**': ¹³C-NMR (75.5 MHz in C_6D_6): δ [*J*(¹¹⁹Sn¹³C)] = 168.4, 169.3 (C²); 156.2 [130.9], 156.1 [113.8] (C³); 146.6, 146.1, 145.6, 145.2, 145.1, 145.0, 144.9, 144.8, 144.5, 144.4, 144.0, 143.82, 143.8, 142.7, 140.4, 140.1 (alle C(*i*)Ph, C^{1,4,7,8}). - ¹¹⁹Sn-NMR (186.5 MHz in C₆D₆): δ = + 25.2, + 16.4.

9g: ¹³C-NMR (75.5 MHz, C_6D_6): $\delta [J(^{119}Sn^{13}C)] = 144.1 [56.8], 143.7 [68.0] [C($ *i*) (Ph)]; 128.5 - 126.0 [C(*o*,*m*,*p*) (Ph)]; 26.1 [52.1], 14.8 [9.0] (EtC³); 22.5, 9.6 (Et₂B); weitere NMR-Daten Tab. 1.

10 g: ¹³C-NMR (75.5 MHz, C_6D_6): $\delta [J(^{119}Sn^{13}C)] = 165.3 [38.2] (C^{7,9}); 151.9 [417.1] (C^{6,10}); 143.7 [68.0]; 143.3 [57.9] (C(i)C^{1.4}); 144.5 [42.5] (C(i)C^{6,10}); 128.7 - 125.2 [C(o, m, p), (Ph)]; 26.4 [59.2], 15.8 [9.0] EtC^{7,9}); 26.2 [52.1], 14.8 [9.0] (EtC^3); 17.5, 9.0 (EtB⁸); 22.5, 9.7 (Et₂B); weitere NMR-Daten Tab. 1.$

11g: ¹³C-NMR (75.5 MHz, C₆D₆): δ [*J*(¹¹⁹Sn¹³C)] = 166.5 (C^{2,4,8,10}); 151.1 [444.4] (C^{1,5,7,11}). – ¹¹⁹Sn-NMR (186.5 MHz, C₆D₆): δ = -268.9.

- ^[1] Herrn Professor Dr. *Heinrich Nöth* zum 65. Geburtstag gewidmet.
- ^[2] R. Köster, *Pure Appl. Chem.* **1977**, *49*, 765-789, speziell S. 766-772.
- ^[3] ^[3a] B. Wrackmeyer, Revs. Silicon, Germanium, Tin, Lead Compds. 1982, 6, 75-148; Chem. Abstr. 1983, 98, 179438. – ^[3b] B. Wrackmeyer in Boron Chemistry – Proceedings of the 6th International Conference on Boron Chemistry (IMEBORON VI) (Hrsg.: S. Hermanek), World Scientific, Singapur, 1987, S. 387-415. – ^[3e] L. Killian, B. Wrackmeyer, J. Organomet. Chem. 1977, 132, 213-221. – ^[3d] L. Killian, B. Wrackmeyer, J. Organomet. Chem. 1978, 148, 137-146. – ^[3e] A. Sebald, B. Wrackmeyer, J. Chem. Soc., Chem. Commun. 1983, 1293-1294. – ^[3d] C. Bihlmayer, S. T. Abu-Orabi, J. Organomet. Chem. 1987, 322, 25-32. – ^[3g] B. Wrackmeyer, J. Organomet. Chem. 1989, 364, 331-342.
- ^[4] R. Köster, G. Seidel, J. Süß, B. Wrackmeyer, Chem. Ber. 1993, 126, 1107-1114.
- ^[5] B. Wrackmeyer, G. Kehr, Polyhedron 1991, 10, 1497-1506.
- ^[6] ^[6a] B. Wrackmeyer, G. Kehr, R. Boese, Chem. Ber. 1992, 125, 643-650. ^[6b] B. Wrackmeyer, G. Kehr, A. Sebald, J. Kümmerlen, Chem. Ber. 1992, 125, 1597-1603. ^[6c] B. Wrackmeyer, G. Kehr, R. Boese, Angew. Chem. 1991, 103, 1374-1376; Angew. Chem. Int. Ed. Engl. 1991, 30, 1370-1372.
 ^[7] ^[7a] G. Bähr, S. Pawlenko, Organo-Zinn-Verbindungen in Metho-
- ^[7] ^[7a] G. Bähr, S. Pawlenko, Organo-Zinn-Verbindungen in Methoden Org. Chem. (Houben-Weyl) 4. Aufl. 1978, Bd. XIII/6, S. 248-249. ^[7b] E. H. Braye, W. Hübel, I. Caplier, J. Am. Chem. Soc. 1961, 83, 4406-4419. ^[7c] F. C. Leavitt, T. A. Manuel, F. Johnson, L. U. Matternas, D. S. Lehman, J. Am. Chem. Soc. 1960, 82, 5099-5102. ^[7d] J. G. Zavistoski, J. J. Zuckerman, J. Ora. Chem. 1969, 34, 4197-4199.
- Zuckerman, J. Org. Chem. 1969, 34, 4197-4199.
 ^[8] [^{8a]} G. Bähr, H.-O. Kalinowski, Organo-germanium-Verbindungen in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1978, Bd. XIII/6, S. 22-24. ^{[8b}] F. C. Leavitt, T. A. Manuel, F. Johnson, J. Am. Chem. Soc. 1959, 81, 3163-3164.
- ^[9] R. Köster, Umwandlung von Organobor-Verbindungen durch Protodeborylierung mit Carbonsäuren in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1984, Bd. XIII, 3c (Hrsg.: R. Köster), S. 248-251.
- ^[10] Weitere Einzelheiten zur Kristallstrukturanalyse von 16a₁ können beim Fachinformationszchtrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-57142, der Autorennamen und des Zeitschriftenzitats angefordert werden.
- ^[11] ^[11a] L. Killian, B. Wrackmeyer, J. Organomet. Chem. 1978, 153, 153-164. ^[11b] S. Kerschl, B. Wrackmeyer, Z. Naturforsch., Teil B, 1984, 39, 1037-1041. ^[11e] B. Wrackmeyer, K. Horchler, Z. Naturforsch., Teil B, 1990, 45, 437-446. ^[11d] B. Wrackmeyer, S. Kundler, R. Boese, Chem. Ber. 1993, 126, 1361-1370. ^[11e] B. Wrackmeyer, D. Wettinger, unveröffentlichte Ergebnisse, Bayreuth, 1992.

- ^[12] B. Wrackmeyer, R. Köster, in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1984, Bd. XIII, 3c (Hrsg.: R. Köster), S. 377-611.
- ^[13] O. W. Sorensen, R. Freeman, T. A. Frenkiel, T. H. Mareci, R. Schuck, J. Magn. Reson. 1982, 46, 180-184; Chem. Abstr. 1982,
- 96, 134 620. ^[14] ^[14] G. A. Morris, R. Freeman, J. Am. Chem. Soc. **1979**, 101, 760-762. ^[14b] G. A. Morris, J. Am. Chem. Soc. **1980**, 102, $428 - 429. - {}^{[14c]}$ D. P. Burum, R. R. Ernst, J. Magn. Reson. **1980**, 39, 163 - 168; Chem. Abstr. **1980**, 93, 84494. - {}^{[14d]} G. A. Morris, J. Magn. Reson. 1980, 41, 185-188; Chem. Abstr. 1980.
- ¹³ 176 638.
 ¹¹⁵ ^{115a} A. Bax, R. Freeman, J. Magn. Reson. 1981, 45, 177-181; Chem. Abstr. 1981, 95, 194 805. ^{115b} T. C. Wong, V. Rutar, J.-S. Wang, J. Am. Chem. Soc. 1984, 106, 7046-7051. ^{115c} Wrackmeyer, H. Zhou, Magn. Reson. Chem. 1990, 28, 1066-1069; Chem. Abstr. 1991, 114, 102248.
- ^[16] C. J. Jameson, in Multinuclear NMR (Hrsg.: J. Mason), Plenum Press, New York, 1987, S. 89-131.
- ^[17] B. Wrackmeyer, Annu. Rep. NMR Spectrosc. 1985, 16, 73-185. ^[18] [^{18a]} E. Colomer, R. J. P. Corriu, M. Lheureux, Chem. Rev. 1990, 90, 265-282; z.B. Ru-Komplex und von Ni, Co, Fe. -^[18b] W.-C. Joo, J.-H. Hong, H. L. Sohn, E.-K. Kang, C.-H. Kim, Bull. Korean Chem. Soc. **1990**, 11, 21-33; Chem. Abstr. **1990**, 113, 78584, dort weitere Literatur über Metallcarbonyl-Kom-
- plexe von 1-Silacyclopentadienen. ^[19] ^[19a] C. Krüger, B. L. Barnett, D. J. Brauer in *The Organic Chem*istry of Iron, Academic Press, New York, **1978**, S. 19. – ^[196] E. W. Abel, T. Blackmore, R. J. Whitley, J. Chem. Soc., Dalton
- ^[20] [20a] J. Dubac, A. Laporterie, G. Manuel, *Chem. Rev.* **1990**, *90*, 215–263. ^[20b] G. T. Burns, E. Colomer, R. J. P. Corriu, M. Laporterie, H. Houghmane, Organometerie, C. Colomer, R. J. P. Corriu, M. Laporterie, H. Houghmane, Organometerie, C. Colomer, R. J. P. Corriu, M. Laporterie, H. Houghmane, Organometerie, C. Colomer, R. J. P. Corriu, M. Laporterie, H. Houghmane, Organometerie, C. Colomer, R. J. P. Corriu, M. Laporterie, H. Houghmane, Organometerie, C. Colomer, R. J. P. Corriu, M. Laporterie, C. Colomer, R. J. P. Corriu, M. Laporterie, M. Laporterie, H. Houghmane, Organometerie, C. Colomer, R. J. P. Corriu, M. Laporterie, M. Laporterie, H. Houghmane, Organometerie, C. Colomer, R. J. P. Corriu, M. Laporterie, M. Laporterie, H. Houghmane, Organometerie, C. Colomer, R. J. P. Corriu, M. Laporterie, M. Laporterie, M. Laporterie, H. Laporterie, M. Laporterie, H. Lheureux, J. Dubac, A. Laporterie, H. Iloughmane, *Organomet.* **1987**, 6, 1398-1406. - [20d] G. E. Herberich, B. Hessner, E. Colomer, M. Lheureux, J. Organomet. Chem. 1987, 335, 91-95.

- ^[20c] G. E. Herberich, B. Hessner, E. Colomer, M. Lheureux, J. Organomet, Chem. 1987, 335, 91-95.

- ^[21] F. Carré, R. J. P. Corriu, C. Guérin, B. J. L. Henner, W. W. C. Wong Chi Man, Organomet. 1989, 8, 313-323.
- ^[22] P. Dufour, M. Dartiguenave, Y. Dartiguenave, J. Dubac, Organomet. 1990, 9, 2832-2836.
- ^[23] A. Dreier, Max-Planck-Institut für Kohlenforschung, Mülheim a.d. Ruhr.
- ^[24] K. Seevogel, Max-Planck-Institut für Kohlenforschung, Mül-
- heim a.d. Ruhr. ^[25] ^[25a] G. Schomburg, F. Sagheb, Max-Planck-Institut für Kohlen-forschung, Mülheim a.d. Ruhr. ^[25b] MS-Daten: D. Henneberg, Max-Planck-Institut für Kohlenforschung, Mülheim a.d. Ruhr.
- [26] [26a] NMR-Kartei: Max-Planck-Institut für Kohlenforschung, Mülheim a.d. Ruhr. [26b] NMR-Messungen an der Universität Bavreuth.
- ^[27] Vgl. H.-D. Scharf, J. Fleischhauer, J. Aretz, Apparative Hilfsmittel – Allgemeines zur Ausführung photochemischer Reaktio-nen in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1975, Bd. IV/5a, S. 41-89.
- ^[28] LiC=CR aus BuLi mit HC=CR: vgl. U. Schöllkopf, Lithiumorganische Verbindungen in Methoden Org. Chem. (Houben-*Weyl) 4. Aufl.*, **1970**, Bd. XIII/1, S. 117-120. ^{[29] [29a]} R. Köster, H.-J. Horstschäfer, P. Binger, *Liebigs Ann. Chem.*
- **1968**, 717, 1–20, speziell S. 11. ^[29b] KC≡CPh: vgl. H. Köpf, M. Schmidt, J. Órganomet. Chem. 1967, 10, 383–384.
- ^[30] R. Köster, P. Binger, W. V. Dahlhoff, Synth. Inorg. Metal-Org. Chem. 1973, 3, 359-367.
- ^[31] K. Jonas, E. Deffense, D. Habermann, Angew. Chem. 1983, 95, 729; Angew. Chem. Suppl 1983, 1005-1016; Angew. Chem. Int. Ed. Engl. 1983, 22, 716.
- ^[32] H. Schmidbaur, J. Ebenhöch, G. Müller, Z. Naturforsch., Teil B., 1988, 43, 49-54.
- ^[33] Et₂BO(CO)Me vgl. Houben-Weyl XIII/3a, S. 579; XIII/3c, S. 465.

[30/93]